Drucken
Alles aufklappen

Zahlensemantik


$ \pi $-Vektor


Seite befindet sich im Aufbau …

Sei:

\[ \definecolor{formcolor}{RGB}{0,0,0} \color{formcolor} { \mathbb{N}\;\;\;≔\;\;\;\mathbb{N_{0}} \setminus {0} } \] (ZS.Ein.PiVe.1)

So lässt sich die Riemann'sche Zeta-Funktion schreiben als:

\[ \definecolor{formcolor}{RGB}{0,0,0} \color{formcolor} { (\forall s \in \mathbb{C}) \left[\; \zeta(s)\;\;\;≔\;\;\;\sum_{\forall n \in \mathbb{N}} \frac{ 1 }{ n^{s} } \\ \qquad\qquad\quad\;\;\;\;\;\;=\;\;\;\prod_{\forall p \in \mathbb{P}} \frac{ p^{s} }{ p^{s} - 1 } \;\right] } \] (ZS.Ein.PiVe.2)

Für den Spezialfall s = 2 ergibt sich:

\[ \definecolor{formcolor}{RGB}{0,0,0} \color{formcolor} { \Rightarrow\hspace{10mm}\zeta(2)\;\;\;=\;\;\;\sum_{\forall n \in \mathbb{N}} \frac{ 1 }{ n^{2} } } \] (ZS.Ein.PiVe.3)
\[ \definecolor{formcolor}{RGB}{0,0,0} \color{formcolor} { \Leftrightarrow\hspace{10mm}\zeta(2)\;\;\;=\;\;\;\frac{ 1 }{ 1 } + \frac{ 1 }{ 4 } + \frac{ 1 }{ 9 } + \frac{ 1 }{ 16 } + \frac{ 1 }{ 25 } + \cdots \\ \qquad\qquad\;\;\;\;=\;\;\;\frac{ \pi^{2} }{ 6 } } \] (ZS.Ein.PiVe.4)

Und damit auch:

\[ \definecolor{formcolor}{RGB}{0,0,0} \color{formcolor} { \Leftrightarrow\hspace{10mm}\zeta(2)\;\;\;=\;\;\;\prod_{\forall p \in \mathbb{P}} \frac{ p^{2} }{ p^{2} - 1 } \\ \qquad\qquad\;\;\;\;=\;\;\;\prod_{\forall p \in \mathbb{P}} \frac{ p^{2} }{ (p - 1) \cdot (p + 1) } \\ \qquad\qquad\;\;\;\;=\;\;\;\frac{ \pi^{2} }{ 6 } } \] (ZS.Ein.PiVe.5)
▼ ausblenden
\[ \definecolor{formcolor}{RGB}{0,0,0} \color{formcolor} { \Leftrightarrow\hspace{10mm}\frac{ \pi^{2} }{ 6 }\;\;\;=\;\;\;\prod_{\forall p \in \mathbb{P}} \frac{ p^{2} }{ (p - 1) \cdot (p + 1) } } \] (ZS.Ein.PiVe.6)
▲ ausblenden
\[ \definecolor{formcolor}{RGB}{0,0,0} \color{formcolor} { \Leftrightarrow\hspace{10mm}\pi^{2}\;\;\;=\;\;\;6 \cdot \prod_{\forall p \in \mathbb{P}} \frac{ p^{2} }{ (p - 1) \cdot (p + 1) } } \] (ZS.Ein.PiVe.7)
\[ \definecolor{formcolor}{RGB}{0,0,0} \color{formcolor} { \Leftrightarrow\hspace{10mm}\pi^{2}\;\;\;=\;\;\;3 \cdot \prod_{\forall p \in \mathbb{P}} \frac{ p^{2} }{ (p - 1) \cdot (p + 1) } \cdot 2 } \] (ZS.Ein.PiVe.8)
\[ \definecolor{formcolor}{RGB}{0,0,0} \color{formcolor} { \Leftrightarrow\hspace{10mm}\pi^{2}\;\;\;=\;\;\;2 \cdot \prod_{\forall p \in \mathbb{P}} \frac{ p^{2} }{ (p - 1) \cdot (p + 1) } \\ \qquad\qquad\quad\;\; + 2 \cdot \prod_{\forall p \in \mathbb{P}} \frac{ p^{2} }{ (p - 1) \cdot (p + 1) } \\ \qquad\qquad\quad\;\; + 2 \cdot \prod_{\forall p \in \mathbb{P}} \frac{ p^{2} }{ (p - 1) \cdot (p + 1) } } \] (ZS.Ein.PiVe.9)

Kleiner Exkurs

Wir substituieren:

\[ \definecolor{formcolor}{RGB}{0,0,0} \color{formcolor} { a^{2}\;\;\;=\;\;\;\prod_{\forall p \in \mathbb{P}} \frac{ p^{2} }{ (p - 1) \cdot (p + 1) } } \] (ZS.Ein.PiVe.10)
\[ \definecolor{formcolor}{RGB}{0,0,0} \color{formcolor} { \Rightarrow\hspace{10mm}\pi^{2}\;\;\;=\;\;\;2 \cdot a^{2} \cdot 3 } \] (ZS.Ein.PiVe.11)
\[ \definecolor{formcolor}{RGB}{0,0,0} \color{formcolor} { \Leftrightarrow\hspace{10mm}\pi^{2}\;\;\;=\;\;\;2 \cdot a^{2} + 2 \cdot a^{2} + 2 \cdot a^{2} } \] (ZS.Ein.PiVe.12)
\[ \definecolor{formcolor}{RGB}{0,0,0} \color{formcolor} { r^{2}\;\;\;=\;\;\;x^{2} + y^{2} + z^{2} } \] (ZS.Ein.PiVe.13)

Vektoriell betrachtet:

\[ \definecolor{formcolor}{RGB}{0,0,0} \color{formcolor} { \vec{r}\;\;\;=\;\;\;\left( \begin{array}{c} x \\ y \\ z \end{array} \right) } \] (ZS.Ein.PiVe.14)
\[ \definecolor{formcolor}{RGB}{0,0,0} \color{formcolor} { \vec{\pi}\;\;\;=\;\;\;\left( \begin{array}{c} \sqrt{2} \cdot a \\ \sqrt{2} \cdot a \\ \sqrt{2} \cdot a \end{array} \right) } \] (ZS.Ein.PiVe.15)
\[ \definecolor{formcolor}{RGB}{0,0,0} \color{formcolor} { b^{2}\;\;\;=\;\;\;\frac{ a }{ \sqrt{2} } } \] (ZS.Ein.PiVe.16)
\[ \definecolor{formcolor}{RGB}{0,0,0} \color{formcolor} { \vec{\pi}\;\;\;=\;\;\;\left( \begin{array}{c} 2 \cdot b^{2} \\ 2 \cdot b^{2} \\ 2 \cdot b^{2} \end{array} \right)\;\;\;=\;\;\;\left( \begin{array}{c} b^{2} + b^{2} \\ b^{2} + b^{2} \\ b^{2} + b^{2} \end{array} \right) } \] (ZS.Ein.PiVe.17)
▼ ausblenden
\[ \definecolor{formcolor}{RGB}{0,0,0} \color{formcolor} { \pi^{2}\;\;\;=\;\;\;\left( 2 \cdot b^{2} \right)^{2} + \left( 2 \cdot b^{2} \right)^{2} + \left( 2 \cdot b^{2} \right)^{2} } \] (ZS.Ein.PiVe.18)
\[ \definecolor{formcolor}{RGB}{0,0,0} \color{formcolor} { \Leftrightarrow\hspace{10mm}\pi^{2}\;\;\;=\;\;\;\left( 2 \cdot \frac{ a }{ \sqrt{2} } \right)^{2} + \left( 2 \cdot \frac{ a }{ \sqrt{2} } \right)^{2} + \left( 2 \cdot \frac{ a }{ \sqrt{2} } \right)^{2} } \] (ZS.Ein.PiVe.19)
\[ \definecolor{formcolor}{RGB}{0,0,0} \color{formcolor} { \Leftrightarrow\hspace{10mm}\pi^{2}\;\;\;=\;\;\;\left( \sqrt{2} \cdot a \right)^{2} + \left( \sqrt{2} \cdot a \right)^{2} + \left( \sqrt{2} \cdot a \right)^{2} } \] (ZS.Ein.PiVe.20)
\[ \definecolor{formcolor}{RGB}{0,0,0} \color{formcolor} { \Leftrightarrow\hspace{10mm}\pi^{2}\;\;\;=\;\;\;2 \cdot a^{2} + 2 \cdot a^{2} + 2 \cdot a^{2} } \] (ZS.Ein.PiVe.21)
▲ ausblenden
\[ \definecolor{formcolor}{RGB}{0,0,0} \color{formcolor} { \vec{\pi}\;\;\;=\;\;\;\left( \begin{array}{c} \left| \left( \begin{array}{c} b \\ b \end{array} \right) \right|^{2} \\ \left| \left( \begin{array}{c} b \\ b \end{array} \right) \right|^{2} \\ \left| \left( \begin{array}{c} b \\ b \end{array} \right) \right|^{2} \end{array} \right) } \] (ZS.Ein.PiVe.22)


Stand 14. Dezember 2024, 13:00 CET.


  • Crowdfunding: Spenden