← |
$ \pi $-Vektor
Seite befindet sich im Aufbau …
Sei:
\[ \definecolor{formcolor}{RGB}{0,0,0} \color{formcolor} { \mathbb{N}\;\;\;≔\;\;\;\mathbb{N_{0}} \setminus {0} } \] | (ZS.Ein.PiVe.1) |
So lässt sich die Riemann'sche Zeta-Funktion schreiben als:
Für den Spezialfall s = 2 ergibt sich:
Und damit auch:
\[ \definecolor{formcolor}{RGB}{0,0,0} \color{formcolor} { \Leftrightarrow\hspace{10mm}\zeta(2)\;\;\;=\;\;\;\prod_{\forall p \in \mathbb{P}} \frac{ p^{2} }{ p^{2} - 1 } \\ \qquad\qquad\;\;\;\;=\;\;\;\prod_{\forall p \in \mathbb{P}} \frac{ p^{2} }{ (p - 1) \cdot (p + 1) } \\ \qquad\qquad\;\;\;\;=\;\;\;\frac{ \pi^{2} }{ 6 } } \] | (ZS.Ein.PiVe.5) | ||
| |||
\[ \definecolor{formcolor}{RGB}{0,0,0} \color{formcolor} { \Leftrightarrow\hspace{10mm}\frac{ \pi^{2} }{ 6 }\;\;\;=\;\;\;\prod_{\forall p \in \mathbb{P}} \frac{ p^{2} }{ (p - 1) \cdot (p + 1) } } \] | (ZS.Ein.PiVe.6) | ||
| |||
\[ \definecolor{formcolor}{RGB}{0,0,0} \color{formcolor} { \Leftrightarrow\hspace{10mm}\pi^{2}\;\;\;=\;\;\;6 \cdot \prod_{\forall p \in \mathbb{P}} \frac{ p^{2} }{ (p - 1) \cdot (p + 1) } } \] | (ZS.Ein.PiVe.7) | ||
\[ \definecolor{formcolor}{RGB}{0,0,0} \color{formcolor} { \Leftrightarrow\hspace{10mm}\pi^{2}\;\;\;=\;\;\;3 \cdot \prod_{\forall p \in \mathbb{P}} \frac{ p^{2} }{ (p - 1) \cdot (p + 1) } \cdot 2 } \] | (ZS.Ein.PiVe.8) | ||
\[ \definecolor{formcolor}{RGB}{0,0,0} \color{formcolor} { \Leftrightarrow\hspace{10mm}\pi^{2}\;\;\;=\;\;\;2 \cdot \prod_{\forall p \in \mathbb{P}} \frac{ p^{2} }{ (p - 1) \cdot (p + 1) } \\ \qquad\qquad\quad\;\; + 2 \cdot \prod_{\forall p \in \mathbb{P}} \frac{ p^{2} }{ (p - 1) \cdot (p + 1) } \\ \qquad\qquad\quad\;\; + 2 \cdot \prod_{\forall p \in \mathbb{P}} \frac{ p^{2} }{ (p - 1) \cdot (p + 1) } } \] | (ZS.Ein.PiVe.9) |
Kleiner Exkurs
Wir substituieren:
Vektoriell betrachtet:
\[ \definecolor{formcolor}{RGB}{0,0,0} \color{formcolor} { \vec{r}\;\;\;=\;\;\;\left( \begin{array}{c} x \\ y \\ z \end{array} \right) } \] | (ZS.Ein.PiVe.14) | ||
\[ \definecolor{formcolor}{RGB}{0,0,0} \color{formcolor} { \vec{\pi}\;\;\;=\;\;\;\left( \begin{array}{c} \sqrt{2} \cdot a \\ \sqrt{2} \cdot a \\ \sqrt{2} \cdot a \end{array} \right) } \] | (ZS.Ein.PiVe.15) | ||
\[ \definecolor{formcolor}{RGB}{0,0,0} \color{formcolor} { b^{2}\;\;\;=\;\;\;\frac{ a }{ \sqrt{2} } } \] | (ZS.Ein.PiVe.16) | ||
\[ \definecolor{formcolor}{RGB}{0,0,0} \color{formcolor} { \vec{\pi}\;\;\;=\;\;\;\left( \begin{array}{c} 2 \cdot b^{2} \\ 2 \cdot b^{2} \\ 2 \cdot b^{2} \end{array} \right)\;\;\;=\;\;\;\left( \begin{array}{c} b^{2} + b^{2} \\ b^{2} + b^{2} \\ b^{2} + b^{2} \end{array} \right) } \] | (ZS.Ein.PiVe.17) | ||
| |||
\[ \definecolor{formcolor}{RGB}{0,0,0} \color{formcolor} { \pi^{2}\;\;\;=\;\;\;\left( 2 \cdot b^{2} \right)^{2} + \left( 2 \cdot b^{2} \right)^{2} + \left( 2 \cdot b^{2} \right)^{2} } \] | (ZS.Ein.PiVe.18) | ||
\[ \definecolor{formcolor}{RGB}{0,0,0} \color{formcolor} { \Leftrightarrow\hspace{10mm}\pi^{2}\;\;\;=\;\;\;\left( 2 \cdot \frac{ a }{ \sqrt{2} } \right)^{2} + \left( 2 \cdot \frac{ a }{ \sqrt{2} } \right)^{2} + \left( 2 \cdot \frac{ a }{ \sqrt{2} } \right)^{2} } \] | (ZS.Ein.PiVe.19) | ||
\[ \definecolor{formcolor}{RGB}{0,0,0} \color{formcolor} { \Leftrightarrow\hspace{10mm}\pi^{2}\;\;\;=\;\;\;\left( \sqrt{2} \cdot a \right)^{2} + \left( \sqrt{2} \cdot a \right)^{2} + \left( \sqrt{2} \cdot a \right)^{2} } \] | (ZS.Ein.PiVe.20) | ||
\[ \definecolor{formcolor}{RGB}{0,0,0} \color{formcolor} { \Leftrightarrow\hspace{10mm}\pi^{2}\;\;\;=\;\;\;2 \cdot a^{2} + 2 \cdot a^{2} + 2 \cdot a^{2} } \] | (ZS.Ein.PiVe.21) | ||
| |||
\[ \definecolor{formcolor}{RGB}{0,0,0} \color{formcolor} { \vec{\pi}\;\;\;=\;\;\;\left( \begin{array}{c} \left| \left( \begin{array}{c} b \\ b \end{array} \right) \right|^{2} \\ \left| \left( \begin{array}{c} b \\ b \end{array} \right) \right|^{2} \\ \left| \left( \begin{array}{c} b \\ b \end{array} \right) \right|^{2} \end{array} \right) } \] | (ZS.Ein.PiVe.22) |
Stand 14. Dezember 2024, 13:00 CET.
-
Permanente Links:
(Klicke auf die Archivlogos
zum Abruf und Ansehen
der Archive dieser Seite.) -
archive.todaywebpage capture